Introduction to Machine Learning with Python

ML Musings
4 min readMar 11, 2023

Learn about the basics of Machine Learning and how to use Python libraries like scikit-learn to build machine learning models

Photo by Chris Ried on Unsplash

Machine learning is a rapidly growing field that allows computers to learn and make predictions without being explicitly programmed. It is a powerful tool for a wide range of applications, from image recognition and natural language processing to fraud detection and predictive analytics. Python is one of the most popular programming languages for machine learning, and has a rich ecosystem of libraries and tools that make it easy to build and deploy machine learning models.

In this article, we will provide an introduction to machine learning with Python and cover the basics of different machine learning algorithms and how to use Python libraries like scikit-learn to build machine learning models.

Let’s begin.

First, let’s take a look at the basic building blocks of machine learning. The three main components of machine learning are the model, the data, and the learning algorithm.

The model is the algorithm that you will use to make predictions. In scikit-learn, you can choose from a variety of pre-built models, such as linear regression, decision trees, and support vector machines.

--

--

ML Musings
ML Musings

Written by ML Musings

✨ I enjoy pushing the boundaries of JS, Python, SwiftUI and AI. You can support my work through coffee - www.buymeacoffee.com/MLMusings

No responses yet